Exponential sums with rational function entries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bounds on Character Sums with Rational Function Entries

We obtain formulae and estimates for character sums of the type S(χ, f, pm) = ∑pm x=1 χ(f(x)), where p m is a prime power with m ≥ 2, χ is a multiplicative character (mod pm), and f = f1/f2 is a rational function over Z. In particular, if p is odd, d = deg(f1) + deg(f2) and d∗ = max(deg(f1), deg(f2)) then we obtain |S(χ, f, pm)| ≤ (d− 1)pm(1− 1 d∗ ) for any non constant f (mod p) and primitive ...

متن کامل

Using Stepanov’s Method for Exponential Sums Involving Rational Functions

For a non-trivial additive character ψ and multiplicative character χ on a finite field Fq , and rational functions f, g in Fq(x), we show that the elementary Stepanov-Schmidt method can be used to obtain the corresponding Weil bound for the sum ∑ x∈Fq\S χ(g(x))ψ(f(x)) where S is the set of the poles of f and g. We also determine precisely the number of characteristic values ωi of modulus q1/2 ...

متن کامل

Congruences and Exponential Sums with the Euler Function

where gcd(a, p) = 1, and N is sufficiently large. Our bounds are nontrivial for a wide range of values of p, starting with p ≥ logN . We remark that although it might be possible to improve on this power of logN , for very small values of p relative to N , it is simply not possible to obtain nontrivial bounds. In fact, it has been shown in Theorem 3.5 of [5] that for any prime number p of size ...

متن کامل

Sums of Values of a Rational Function

Let K be a number field, and let f ∈ K(x) be a nonconstant rational function. We study the sets { n ∑ i=1 f(xi) : xi ∈ K − {poles of f} }

متن کامل

Bilinear Sums with Exponential Functions

Let g = 0,±1 be a fixed integer. Given two sequences of complex numbers (φm) ∞ m=1 and (ψn) ∞ n=1 and two sufficiently large integers M and N , we estimate the exponential sums ∑ p≤M gcd(ag,p)=1 ∑ 1≤n≤N φpψnep (ag ) , a ∈ Z, where the outer summation is taken over all primes p ≤ M with gcd(ag, p) = 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2000

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-95-1-67-95